segunda-feira, 22 de dezembro de 2014

OS VERDADEIROS SEGRESDOS DO SEXO( Superinteressante)

Os verdadeiros segredos do Sexo

Os cientistas finalmente descobriram por que as espécies se reproduzem daquela maneira que todos conhecem, ou de outra, sem graça nenhuma.

por Lúcia Helena de Oliveira

Semelhantes a finíssimos fios de cabelos, certas algas que os biólogos chamam Spyrogira, constituídas por uma só carreira de células, não cessam de crescer e multiplicar-se. A célula, na ponta, duplica-se o tempo todo, até que a alga, de tão longa, acaba por se quebrar — a partir desse instante, passam a existir duas algas e o processo continua. Há quatro anos, cientistas canadenses notaram na emaranhada cabeleira verde que forma a planta aquática um acontecimento incomum nessa rotina: de repente, brotou um microscópico espinho em uma célula; esta, com o novo acessório, furou a alga vizinha, injetando-lhe o seu material genético. Daí surgiu uma teoria tão excitante que, hoje em dia, quando o assunto é reprodução sexual, a conversa tem de começar pelas algas. Afinal, antes daquela descoberta, todo cientista interessado em estudar esse assunto antigo como a vida corria o risco de levar para a cama um motivo de insônia. Pois, por absurdo que pareça, do ponto de vista estritamente biológico não se conhecia uma boa razão para haver sexo.
Um paradoxo sempre intrigou os pesquisadores da reprodução: os seres vivos gastam um tempo precioso em busca de um parceiro; quando o encontram, muitas vezes precisam proteger o achado de rivais poderosos com unhas e dentes — no sentido literal, ou figurado, conforme a espécie. Além disso ainda se despende uma respeitável quantidade de energia nos jogos de sedução. E as armas mais eficazes para a conquista podem às vezes voltar-se contra seus donos. O pavão, exemplo típico de exibicionista, pode atrair várias fêmeas com o charme de sua cauda, mas em compensação mal consegue fugir de um predador devido ao peso de seu leque de penas multicoloridas. Mesmo quando todo o esforço vale a pena, no caso individual ou da espécie, o sexo como forma de reprodução perde de longe para a reprodução assexuada.
É pura matemática: enquanto cada indivíduo assexuado é capaz de ter um filho, na reprodução sexuada são necessários dois indivíduos para nascer um filho. O resultado é que, desconhecendo o sexo, uma espécie pode se reproduzir duas vezes mais depressa. Como uma lei biológica elementar faz com que qualquer espécie tenda a propagar o seu estoque genético ao máximo — isto é, mediante o nascimento do maior número possível de indivíduos —, então o certo seria antes só do que acompanhado. Mas não é isso o que se observa na natureza e aí está o paradoxo: apenas a minoria de 15 mil espécies animais, dos 2 milhões existentes no planeta, prefere se reproduzir assexuadamente, ou seja, crescendo e se dividindo, como a alga Spyrogira.
“Diante disso, podemos imaginar que a princípio fazer sexo devia parecer uma excelente opção”, avalia o geneticista Oswaldo Frota-Pessoa, da Universidade de São Paulo. Em outras palavras, de alguma maneira a reprodução sexual teria de aumentar a quantidade de filhos — o que, de fato, o sexo não proporcionou. Mas, do ponto de vista dos genes, como a espetada das Spyrogira mostrou, a reprodução sexual representava um ótimo negócio: as algas continuavam a se reproduzir assexuadamente e, dessa maneira, o material genético injetado passava a ser copiado não em um, mas em dois organismos, o que espetou e o que foi espetado. A alga que recebeu os genes estranhos, por sua vez, também se tornava capaz de penetrar em uma célula alheia e assim, rapidamente, a reprodução sexual se espalhou. Supõe-se que com as células primitivas, as bactérias, algo semelhante tenha ocorrido.
“O sexo surgiu graças a genes parasitas, que se disseminaram feito uma praga”, sugere Frota-Pessoa, um paulista de cabeça branca, quatro filhos, com o olhar entusiasmado de um adolescente ao falar de sexo. Motivos de entusiasmo não lhe faltam. Ele, afinal, estuda o assunto há mais de quarenta dos seus 72 anos, escreveu 44 livros e já perdeu o cálculo de quantas vezes, uma página aqui, um capítulo ali, questionou a consagrada teoria da variabilidade dos genes, que aponta como a grande vantagem do sexo o fato de embaralhar as características maternas e paternas, criando em uma mesma espécie seres geneticamente diversificados, portanto com maiores chances de sobrevivência. Essa qualidade é uma feliz conseqüência do intercâmbio de material genético, o que, por definição, é sexo — mas jamais a sua razão de ser.
As células da maioria das espécies são diplóides, ou seja, possuem duas cópias de cada gene; os genes, por sua vez, formam cordões, os chamados cromossomos, que se distribuem aos pares (23, no caso dos humanos). A única exceção são as células sexuais, também conhecidas como gametas, que têm somente uma cópia de cada cromossomo. Caso contrário, se os gametas também fossem diplóides, o número de cromossomos dobraria a cada geração. É quase impossível, contudo, que os cromossomos de um par sejam idênticos, pois as duas cópias de um gene, ao serem reunidas na reprodução sexual, costumam se apresentar em versões diferentes: no par que determina a cor dos olhos, por exemplo, um gene pode indicar o azul e a sua cara metade pode indicar o castanho. No ser humano, que possui mais de 100 mil genes, as possibilidades de combinações beiram o infinito. E assim cada ser é praticamente único.
Pode-se dizer que em uma população sexuada sempre existem, por exemplo, indivíduos mais adaptados à seca e outros mais preparados para viver em clima úmido. Na reprodução assexuada, porém, os filhos são cópias idênticas dos pais, cujo organismo por definição está pronto apenas para enfrentar o aqui e o agora — uma lástima num mundo em que o normal é a mudança. Um estudo de geneticistas americanos mostra que as espécies assexuadas conhecidas são derivadas das sexuadas — sinal de que as formas primitivas, que ignoravam o sexo, não conseguiram chegar até os dias atuais, justamente por falta de jogo de cintura genético.
É sempre assim: em espécies em que o sexo é a norma, uma mutação genética faz eventualmente aparecer uma fêmea assexuada, portadora de óvulos já prontos para gerar um embrião. Esta, é claro, acaba se reproduzindo com tamanha velocidade que logo se espalha por grandes áreas. Ora, como na competição por alimentos costuma vencer quem pertence ao time mais numeroso, a população assexuada tende a sobreviver aos indivíduos sexuados que lhe deram origem. O processo mata a charada com que topou há 23 anos a bióloga Denise Peccinini Seale, da Universidade de São Paulo, quando foi pela primeira vez à Amazônia analisar células de uma família de pequenos lagartos que atende pelo nome de Cnemidophorus. Depois de 45 horas subindo o rio Trombetas, chegou ao vilarejo de Oriximiná, onde, para sua surpresa, encontrou uma população dos répteis constituída só de fêmeas.
Dois anos antes, outro pesquisador havia encontrado também machos por ali. Seu desaparecimento, em tão pouco tempo, se explica pela existência de uma fêmea capaz de se reproduzir sem ajuda alheia. Os biólogos já sabiam que os lagartos, ao passar por mutações genéticas, tornam-se capazes desse tipo de reprodução, a partenogênese. “Mas, a essa altura, eu queria saber se encontraria sexo entre os lagartos caso continuasse subindo os rios da região”, conta Denise. Ela voltou à Amazônia outras quinze vezes em 21 anos. E, graças a tantas viagens, completou recentemente um trabalho, em cooperação com cientistas americanos, que pode ser considerado uma verdadeira revolução sexual: por causa de um complicado sistema de divisão celular, a meiose, a fêmea partenogênica também tem a diversidade dos genes, até então o grande trunfo de quem praticava sexo. “Como o filhote não é um clone da mãe, passamos a admitir a existência de uma reprodução sexual modificada”, resume a bióloga.
Quem prefere sexo na versão original, no entanto, pode ficar tranqüilo. É teoricamente impossível para a maioria das atuais espécies sexuadas deixar os machos de lado, pois milhares de genes, ao longo da evolução, acabaram se envolvendo com o sexo. No princípio, a vida desconhecia a diferença entre feminino e masculino: a célula, como a da alga Spyrogira, fazia o papel de fêmea ao receber os genes alheios; mais tarde, fazia as vezes de macho ao penetrar em outra para injetar o material genético. Alguns genes, contudo, pouco a pouco foram se especializando. O processo culmina com o aparecimento, em algumas plantas, dos gametas, células cuja única função é reproduzir o indivíduo.
Também a partir de então aparece uma divisão de trabalho: alguns organismos cuidam de fabricar gametas pequenos, que se locomovem com facilidade e possuem enzimas especiais para romper a barreira de outra célula — e eis que surge o macho, mestre na arte de fecundar; outros organismos produzem gametas maiores, dentro dos quais começa a se desenvolver o novo indivíduo — e brota a fêmea, especialista em dar crias. A maioria das plantas no entanto é hermafrodita, isto é, possui tanto o minúsculo grão de pólen do macho como o óvulo da fêmea em que a semente será gerada. Faz sentido: com as raízes fincadas no chão, uma roseira não pode ir ao encontro amoroso de outra. As plantas dependem do vento, dos insetos e dos pássaros — cupidos que, atraídos pelas cores que vibram e pelo perfume que os vegetais exalam na época do acasalamento, abandonam o pólen de uma flor em outra. Se cada vegetal tivesse apenas um sexo, seria grande a chance de que o pólen de uma planta macho pousasse em outra planta macho — e então não haveria reprodução. No entanto, concentrar a energia exclusivamente em um sexo torna a produção de gametas mais eficaz e por isso, no reino animal, um hermafrodita como o caracol é um bicho raro. Bom para ele. Pois, quando se arrasta por um solo arenoso, feito molusco, qualquer distância pode tornar um amor impossível; logo, tem de tirar todo proveito dos momentos passados ao lado do parceiro: os dois seres se esticam, ficam em posição vertical e se enroscam em um abraço que pode durar um dia inteiro; enquanto isso, fabricam agulhas finas de um material semelhante ao das conchas, através das quais um caracol fecunda o outro.
O que faz os caracóis insistir na procura do parceiro são genes responsáveis pela atração. “De nada adiantaria a capacidade de realizar sexo, se um ser não sentisse compulsão de se acasalar”, raciocina o geneticista Frota-Pessoa. Um galo, mesmo criado em isolamento, ao ver uma galinha começa a circular em torno dela, fazendo-lhe a corte. O sistema nervoso de todo animal já nasce programado para o sexo. Como uma espécie de seguro adicional, os genes ainda fazem com que certas glândulas jorrem hormônios, que desencadeiam o desejo, a pulsão sexual.
Para os bichos, verdadeiras tentações são substâncias chamadas feromônios, cujos odores atraem machos na direção de fêmeas e vice-versa. No caso do homem, nenhum perfume é assim tão irresistível. O sexo, é claro, tem cheiros próprios, provocados por alterações no organismo, que eventualmente convidam a mais sexo. O olfato, porém, tem um papel secundário no desejo humano. Segundo o neuroendocrinologista Marcello Delano Bronstein, do Hospital das Clínicas de São Paulo, algumas gotas de um perfume como o celebrado Chanel n° 5 provocam a febre devastadora pela qual tais essências são tão apreciadas, por causa da testosterona, o hormônio sexual masculino — que, aliás, as glândulas femininas também produzem, em doses dez vezes inferiores, o suficiente para acender a paixão. “Pessoas com taxas baixas do hormônio têm a libido diminuída”, nota o médico. Nada indica, porém, que dosagens maiores de testosterona aumentem o desejo, como se acreditava no passado. Outro hormônio ligado ao sexo, mas de forma negativa, é a prolactina, cujas taxas aumentam na mulher durante a gravidez e na amamentação, diminuindo o desejo.
Alguns cientistas suspeitam que, nos animais superiores, a falta de interesse da fêmea pelo parceiro, após o parto, tem a função de permitir que ela dedique suas energias aos filhotes. E no final das contas — o que pode surpreender muito paquerador —, os filhos estão sempre por trás da recusa de uma fêmea. Ao menos foi isso o que observou o naturalista inglês Charles Darwin (1809-1882) ao estudar o que chamou a seleção sexual, ou seja, os estratagemas que as espécies desenvolveram a fim de que os indivíduos possam seduzir-se uns aos outros. Segundo Darwin, uma das primeiras formas de vida a se enfeitar para esse jogo foram as anêmonas, plantas aquáticas que se distinguem pelo colorido. Na maioria das espécies, o sim é prerrogativa da dama. Nada mais justo, pois ela precisa escolher um macho que lhe proporcione as maiores chances de perpetuação dos próprios genes. Para tanto, contam a aparência e a persistência do cavalheiro; seu comportamento é percebido pela fêmea como indício da maior ou menor disposição de cuidar da prole que virá.
A drosófila, pequenina variedade de mosca, é um exemplo típico de astúcia feminina, atiçando o macho, mas sem cooperar na hora agá — isso só acontecerá muitas piruetas mais tarde, quando, excitada pela dança do casanova ao seu redor, a fêmea permite a aproximação. “Por instinto”, explica Frota-Pessoa, “a drosófila reconhece naquele que perde mais tempo com acrobacias a intenção de ficar a seu lado quando nascerem os filhotes.” O comportamento sexual dos bichos parece sempre mostrar uma lógica ditada pela natureza. No homem, porém, o sexo, como tantas outras manifestações, é uma requintada mistura de natureza e cultura, instinto e aprendizado. Ao criar símbolos, o ser humano fez da sedução um jogo complexo, em que a fantasia desempenha um papel essencial. Sendo a única espécie para a qual o sexo não depende de cio nem tem data marcada, como acontece com os outros animais, o homem pôde transformar o prazer físico em erotismo — e este em amor.


Para saber mais:
Toda a vida do mundo
(SUPER número 7, ano 4)




Onde o macho não entra.
Em duas espécies de vertebrados, peixes e lagartos, os filhotes herdam genes apenas da mãe. Certos peixes se reproduzem por ginogênese, um processo em que a fêmea se vale do estímulo do macho para desovar mas, depois, quando começam as divisões celulares, os genes trazidos pelo espermatozóide são deixados de lado e o embrião se desenvolve só com a herança materna. Nos lagartos ocorre a partenogênese — um modo de reprodução por sinal comum entre os insetos —, em que uma fêmea, aparentemente igual a qualquer outra companheira sexuada de espécie, produz um óvulo diplóide, ou seja, com duas cópias de genes, portanto capaz de gerar o embrião sem ser fecundado pelo macho.
De acordo com um estudo recente, as células dessas fêmeas se dividem por meiose, uma forma de embaralhar os genes típica da reprodução sexuada: os cromossomos se duplicam, formando dois pares de gêmeos idênticos; os pares são cortados por enzimas em diversos pontos; recombinados, criarão novos cromossomos. A célula, já com quatro pares de cromossomos, se divide para voltar a ser diplóide. Segundo a bióloga Denise Peccinini Seale, da Universidade de São Paulo, “a meiose é tão bem realizada por esses lagartos que, comparando as fêmeas partenogênicas com os indivíduos sexuados da mesma espécie, as primeiras têm mais diversidade nos genes”.



Amar é....
Amar, de certo modo, é ter reações químicas em cascata. No caso da espécie humana, quatro milhões de receptores na pele podem captar os carinhos recebidos e enviar a mensagem do prazer ao cérebro. Este, a princípio, manda as glândulas competentes liberar cortisona, açúcares e adrenalina no sangue. O coquetel mexe com o organismo: o coração e a respiração disparam, o metabolismo se acelera, os vasos capilares se dilatam. Com isso, a pele fica ruborizada e a temperatura do corpo aumenta. Devido a todo esse calor, as glândulas, da pele, que se concentram em regiões como os órgãos genitais, funcionam a pleno vapor, produzindo substâncias cujo odor típico aumenta a excitação.
O cérebro torna então a reagir, desta vez autorizando a liberação de dopamina, um hormônio de efeito antidepressivo, nas células nervosas. Quando a mistura de agentes químicos parece chegar ao ponto de ebulição, o sistema nervoso, cauteloso por experiência, envia acetilcolina, um hormônio antagonista das substâncias excitantes. A súbita interrupção causa um espasmo que o corpo, no limite do estresse, como uma corda de violino distendida ao máximo, recebe com o maior prazer — é o orgasmo. Em seguida, o cérebro encerra o expediente com a liberação das endorfinas, analgésicos naturais que provocam a sensacão de relaxamento após o sexo.



Como a vida se defende
A fêmea do dourado, peixe comum nos rios brasileiros, produz 5 mil óvulos sobre os quais o macho esparrama milhões de espermatozóides; o casal se reproduz cerca de 15 vezes durante seus dezoito anos de vida — e, no final, restam apenas um ou dois herdeiros. Milhares de óvulos deixaram de ser fecundados, não vingaram ou foram repasto de predadores. Por isso, a natureza desenvolveu mecanismos de proteção à vida que chega. Os répteis deram um grande passo: seus óvulos, bem maiores, já contêm os nutrientes para os embriões, enquanto até os anfíbios o embrião tinha de se nutrir diretamente da água, dependendo assim do ambiente. Também com os répteis surge o acasalamento, ou seja, o organismo feminino passa a ser o território da fecundação.
As técnicas de segurança ficaram ainda mais aperfeiçoadas com os mamíferos. Marsupiais como os cangurus são uma amostra dessa passagem: além de ser interna a fecundação, o embrião formado começa a se desenvolver no útero, de onde ele sairá para alcançar com as próprias garras uma espécie de bolsa na barriga da mãe; daí alcança as tetas, completando dessa maneira o seu desenvolvimento. Nos demais mamíferos, porém, o filhote só é expulso do ventre materno quando seu organismo já está pronto para a vida.

Trem pouso do Avião...curiosidade (Super Interessante)

O aviso "apaguem os cigarros e apertem os cintos" alerta os passageiros que o avião está prestes a pousar. Instantes depois, um novo ruído se junta ao das turbinas. Nada de assustar é apenas a descida dos trens de pouso, que dura 30 segundos e a bordo se traduz por um leve tremor nos assentos. Na verdade, essa pequena trepidação antecipa um formidável impacto — o contato dos pneus com o solo a 235 quilômetros por hora. Escondidos na fuselagem durante o vôo, os trens de aterrissagem suportam, mais que qualquer outra parte do avião, enormes esforços a cada pouso e decolagem. Já para suportar suas pesadas responsabilidades, os trens reúnem o que há de mais avançado em tecnologia aeronáutica. Rodas, pneus, freios e amortecedores, elementos típicos dos veículos que não saem do chão, também são essenciais para os aparelhos que voam, ainda que sejam menos ostensivos e menos glamurosos do que asas e reatores.
Cada trem de pouso pode pesar quase 3 toneladas — algo como 3 a 4 por cento de toda a aeronave — mas agüentam até o triplo desse peso total no choque com a pista. No caso de um Jumbo 747, o maior avião de passageiros da atualidade, as dezoito rodas dos cinco trens de pouso levam apenas 4 centésimos de segundo após o encontro com o cimento para acelerar à mesma velocidade do avião, enquanto suportam o impacto das 285 toneladas da aeronave. O atrito com a pista eleva a temperatura da borracha dos pneus a mais de 80 graus centígrados. Com o cinto apertado, o passageiro sente no corpo quando um anteparo na saída de ar das turbinas é acionado para mudar a direção do impulso, reduzindo a velocidade do aparelho. Ao mesmo tempo, dispositivos aerodinâmicos das asas diminuem a sustentação no ar e cravam o avião ao solo. Sensores instalados nos trens de pouso indicam então que as rodas giram e os amortecedores estão comprimidos, atestando desse modo que o avião definitivamente está no chão. É a vez de controles hidráulicos acionarem os freios automáticos das rodas reduzindo a marcha até uns 60 quilômetros por hora. Desse ponto em diante o piloto geralmente aciona o freio manual e, girando outro manche, conduz o aparelho, já lentamente, ao ponto de estacionamento.
Até o próximo vôo, o trem de pouso servirá como um simples suporte em terra, enquanto os mecânicos responsáveis pela manutenção tratam de reparar ou substituir as peças desgastadas. "Sabemos que o bom estado das rodas e pneus significa segurança ao serem exigidas ao máximo. As inspeções, portanto, ocorrem, a cada pouso em todos os aeroportos, onde há um intercâmbio de peças de reserva entre as companhias", explica Itacir Silvestrin, engenheiro-chefe de manutenção da Varig. "Após trezentas horas de vôo, o avião vai finalmente para o hangar e todo o trem é desmontado e revisado." Em seu departamento, que ocupa uma vasta área próxima ao Aeroporto do Galeão, no Rio de Janeiro, mais de 2 mil pessoas cuidam da conservação periódica de uma frota de 72 aeronaves, das quais oito 747.
De fato, uma boa medida dessa preocupação está na lista de manutenção das aeronaves entre um vôo e outro. Segundo Itacir, os trens de pouso chegam a ocupar o terceiro lugar em número de reparos e os gastos com freios e pneus só são superados pelos das peças dos motores. Os grandes esforços a que se sujeitam os 125 centímetros de diâmetro desses pneus de aviação limitam realmente sua vida normal a um máximo de 200 ciclos — sendo cada ciclo uma média de 10 quilômetros de rodagem em pistas de acesso à pista de decolagem, manobras no pátio de estacionamento e trechos de impulso em cada decolagem e pouso. Para sorte das companhias, entretanto, os pneus podem ser recauchutados várias vezes sem perder a qualidade. "A carcaça do pneu de aviação tem uma estrutura diferente. Os pneus de um Jumbo, por exemplo, que só perdem em tamanho para os de um modelo DC-10 agüentam até oito recauchutagens". informa Itacir. Ele faz uma afirmação surpreendente:"Ao contrário do que acontece com os carros, confiamos mais num pneu usado, já testado na prática, do que em um novo". Os freios desses gigantes sofrem ainda mais, tendo uma expectativa de vida útil da ordem de setecentos pousos. Seus discos múltiplos giram paralelamente em alta velocidade até serem comprimidos uns contra os outros por vários mecanismos hidráulicos, que seguram a rotação das rodas, provocando um aquecimento superior a 260 graus centígrados
Embora a última geração de discos já seja feita de materiais especialmente resistentes, como o berílio ou o carbono não há como evitar o desgaste provocado por tamanho atrito. Com todos esses problemas e mesmo desempenhando um papel vital, os trens de pouso não são considerados peças críticas para a segurança do avião, como é o caso do motor. "Afinal, é possível aterrissar sem os trens — e os projetistas consideram essa alternativa no desenvolvimento dos aparelhos: mas não dá para voar sem motores", compara o engenheiro aeronáutico Luis Carlos Affonso, da Empresa Brasileira de Aeronáutica (Embraer), a qual tem mais de 4 mil unidades vendidas em 21 anos de existência.
Houve tempo, de fato, em que os trens de pouso eram considerados desnecessários e mesmo inconvenientes. Era o tempo dos pioneiros da aviação, quando um pequeno motor movimentava um engenho de juncos, arames e telas. que somava alguns poucos quilos. Ao contrário do 14 bis de Santos Dumont, por exemplo, o mais pesado que o ar dos americanos Orville e Wilbur Wright não contava com nenhum trem de pouso. Para sair do chão, o biplano dos irmãos Wright utilizava apenas trilhos metálicos para diminuir o atrito com o terreno, o único problema que parecia preocupar esses pioneiros. Para aterrissar, o processo era ainda mais rústico: a própria estrutura suportava o golpe do encontro com o solo.
A maioria dos projetistas que os sucederam entretanto, logo passou a incluir rodas em suas fantásticas máquinas voadoras. O grande desafio dos primeiros adeptos do trem de pouso era resolver os problemas no ar, quando a superfície do trem opunha tal resistência ao vento que dificultava o avanço. E, à medida que se elevava a velocidade de cruzeiro possível de ser alcançada, o problema ficava potencialmente maior. É que, de acordo com uma equação básica de aerodinâmica, a resistência do ar sobe ao quadrado cada vez que se duplica a velocidade. Isso significa que se um corpo a 60 quilômetros por hora oferece uma resistência de valor quatro, quando estiver a 120 quilômetros horários a resistência chegará a dezesseis.
Assim, o que parecia ser uma solução definitiva também tinha seus inconvenientes e os engenheiros trataram de buscar novas opções. Uma delas foi a utilização de um carro de decolagem, que se desprendia do avião tão logo este deixava o solo. Obviamente, essa idéia não resistiu muito tempo, já que o pouso se dava diretamente sobre a fuselagem, como nos velhos engenhos dos irmãos Wright. Mesmo assim, alguns aviões de combate, como o caça alemão Messerschmitt ME163 "Komet", que alcançava 1000 quilômetros por hora, chegaram a adotar o desconfortável sistema. Temível caça a jato da Segunda Guerra Mundial, o Komet teve mais perdas durante as aterrissagens do que em situações de combate. Enquanto uma idéia melhor não surgia, as aeronaves que pousavam e decolavam na água começaram a ganhar terreno — por assim dizer.
O perfil em forma de canoa desses hidroaviões demonstrou ter, desde o início, uma aerodinâmica perfeita, muito superior aos seus parentes terrestres com trem fixo. O modelo anfíbio Catalina dos anos 40, por exemplo, só foi aposentado pela Força Aérea Brasileira há pouco mais de três anos. Mas, como nem sempre se tem uma superfície de água para utilizar como aeródromo, os engenheiros buscaram uma nova alternativa — esconder as rodas dentro da fuselagem ou da asa durante o vôo e retirá-las para pouso. Boa e exigente idéia. Afinal, um mecanismo que permita a retração e extensão das patas de rodas é sempre complicado de construir e inevitavelmente mais pesado que um equipamento fixo.
Tanto assim que até hoje o clássico trem imóvel, simples e robusto, sobrevive em alguns modelos. É o caso da maioria dos pequenos aviões de turismo. Na maior parte das vezes, esses aparelhos resolvem seus problemas de aerodinâmica com revestimentos nas rodas, que reduzem a resistência do ar. As primeiras aeronaves a incorporar efetivamente os trens escamoteáveis foram os caças de combate. Os pilotos desses primeiros modelos tinham de ser verdadeiros ases para controlar o avião. Pois, justamente durante as fases mais críticas, da decolagem ou aterrissagem, eram obrigados a um trabalho braçal: girar a manivela que por meio de cabos de aço movimentaria o aterrissador até seu alojamento. A história desses equipamentos registra uma série de acidentes com pilotos que simplesmente esqueciam de baixar o trem de pouso nesses momentos de tensão.
Desde então, a tecnologia de transportes aéreos desenvolveu vários sistemas alternativos de apoio aos mecanismos de controle do avião para reduzir os riscos provocados, entre outras coisas, por peças defeituosas. É o que o engenheiro Affonso, da Embraer, chama de redundância: em caso de pane em qualquer sistema, há sempre outro de reserva pronto para executar a mesma função. Assim, se os trens de pouso não obedecerem ao comando para abaixar, sempre se poderá destravá-los manualmente e deixá-los cair por gravidade (sistema free fall, ou queda livre). Existem normas internacionais especificando tais mecanismos de segurança. "No caso dos aviões grandes e mesmo na maioria dos modelos feitos por nós, que transportam apenas duas dezenas de passageiros, a norma é uma só", explica Affonso. Para os aviões militares as regras são outras.
O AMX, um caça de última geração desenvolvido pela Embraer em conjunto com empresas italianas, conta, por exemplo, com apenas um pneu em cada trem de pouso, uma falta de redundância inadmissível em aviões civis, que transportam não uma, mas até 408 pessoas — nenhuma delas, por sinal, acomodada em assentos ejetáveis. Para Affonso, o exemplo do AMX ilustra bem como o trem de pouso realmente define o projeto final da aeronave. "Além disso, um avião começa a ser projetado pela posição do trem de pouso em relação à fuselagem e às asas", lembra. Desde a Segunda Guerra Mundial, utiliza-se um trem dianteiro (proa) e um par de trens principais presos às asas ou à fuselagem, próximos ao centro de gravidade do aparelho (ponto de equilíbrio entre os pesos dianteiro e de cauda).
A roda de proa substituiu a rodilha traseira clássica dos velhos DC-3, que não tinha como ser recolhida durante o vôo, diminuindo o risco de pilonagem (como os aviadores se referem à capotagem durante o pouso), aumentando a visibilidade do piloto e facilitando a freada. Seguindo também esse raciocínio o tipo de pneu utilizado pode indicar o tempo de vôo que se pretende: os pneus radiais — largamente empregados por automóveis devido à sua alta resistência — só na última década começaram a ser adotados por algumas companhias de aviação e, mesmo assim, exclusivamente para determinadas viagens curtas com pouco tempo de permanência em terra. Para viagens longas, não vale a pena carregar esse tipo de pneu e sim outros mais leves. Mas, se os aviões passaram a imitar os carros nesse aspecto, em outros acontece o inverso. E a razão disso é fácil de entender. Com a redução da velocidade o avião necessariamente vai para o chão e passa a funcionar como um improvável grande automóvel alado, dotado de todos os recursos e sujeito a problemas bem conhecidos de qualquer motorista.
A aquaplanagem, por exemplo, é um problema comum em pouso sobre pistas molhadas, que preocupa os engenheiros aeronáuticos há muito tempo. Ocorre quando partículas de óleo misturam-se à água da chuva, formando uma fina camada escorregadia sobre a pista. Em alta velocidade, os pneus podem se despregar do solo, girando em falso e perdendo a eficácia aderente ao frear. A solução, que mais tarde foi transplantada em vários modelos de carro, consiste em um mecanismo que detecta o bloqueio das rodas, atenuando a pressão dos freios, de forma que elas voltem a girar. Para o motor também continuar girando, sem se encharcar e morrer, os trens foram desenhados para jogar a água em outra direção. O estouro de um pneu, outro problema comum a qualquer automóvel, contém um risco maior. Por isso se os pneus se aquecerem até o ponto crítico, a 150 graus centígrados, uma válvula se romperá e irá liberar o ar lentamente, antes que ocorra o acidente. "Os atuais desafios que enfrentamos ao desenvolver novos projetos reúnem diversas áreas especializadas", descreve o engenheiro Affonso. A engenharia de materiais, por exemplo, deverá substituir o alumínio forjado e o aço dos trens por compostos metálicos de carbono.
A mecânica e a eletrônica poderão, em pouco tempo, apresentar um amortecedor inteligente, que se ajuste a fim de suportar o impacto específico de cada situação, tornando os pousos mais confortáveis. O trem de pouso dos ônibus espaciais americanos é apontado pelos técnicos como um modelo a seguir. Muito embora neles os freios e pneus resistam pouco aos fortes impactos das aterrissagens (o máximo é cinco pousos), todo o complicado sistema de freios é acionado por comandos eletroeletrônicos. É o chamado freio by wire, que dispensa os pesados cabos de acionamento mecânico "Quase tudo isso é viável e um dia vai estar nos aviões que circulam por aí", prevê Affonso. Mas isso os passageiros provavelmente não vão notar. Afinal ao subir num avião, poucos se dão conta de que ele também tem pneus.


Para saber mais:
(SUPER número 4, ano 3)




TREM DE GUERRA
As duras provas pelas quais passa o trem de pouso de um avião comercial são, como dizem os especialistas em aviação militar, brincadeira de criança, comparadas às provações a que estão sujeitas as versões utilizadas nos aparelhos de combate. Os pneus do SR-71, um jato americano capaz de voar a 3600 quilômetros por hora (três vezes a velocidade do som) precisam, por exemplo, de proteção especial para não se queimarem sob o enorme calor gerado pelo atrito do avião com o ar. Grandes caixas de titânio metal resistente a altas temperaturas, abrigam os pneus do SR-71, que possuem ainda uma cobertura especial de alumínio. Mas o caso extremo é o das aeronaves embarcadas em porta-aviões. Ali, as condições de pouso e decolagem são críticas tanto para os trens quanto para os pilotos: o espaço é mínimo e a pista se move. Na decolagem, as 30 toneladas de um caça como o F-14 americano, capaz de carregar 7 mil quilos de armamentos, se precipitam para a frente, acelerando a 240 quilômetros por hora em menos de 2 segundos. Depois de vencer menos de 90 metros já está no ar. Pior será a volta, a 250 quilômetros por hora, sobre a instável superfície do navio e a parada, quase instantânea, graças a um tipo de gancho instalado na sua traseira, que se prende a um cabo de aço atravessado sobre a pista. Um erro de pilotagem ou um defeito no trem de pouso e o aparelho vai por água abaixo, literalmente — isso se não colidir com a torre de comando do navio.

terça-feira, 16 de dezembro de 2014

Dilma sanciona sem vetos lei que autoriza manobra fiscal do governo (Jornal o Tempo


CADÊ A ÉTICA??????????????????????????????/


Lei permite que desonerações tributárias e gastos do PAC sejam abatidos dessa meta de poupança; meta fiscal, de ao menos R$ 81 bilhões, deixa na prática de existir, e o governo fica autorizado até mesmo a apresentar um déficit em 2014

Enviar por e-mail
Imprimir
Aumentar letra
Diminur letra
Fonte Normal
Dilma Rousseff.
Sanção foi publicada no "Diário Oficial da União"
PUBLICADO EM 16/12/14 - 10h33
A presidente Dilma Rousseff sancionou nesta terça-feira (16) projeto de lei que permite ao governo federal fechar as contas deste ano, por meio de uma manobra fiscal.

A União fica, então, liberada de cumprir a meta de economia para o pagamento de juros da dívida (o chamado superávit primário) estabelecida para este ano. A sanção foi publicada no "Diário Oficial da União".
A lei permite que desonerações tributárias e gastos do PAC (Programa de Aceleração do Crescimento) sejam abatidos dessa meta de poupança. Com isso, a meta fiscal, de ao menos R$ 81 bilhões, deixa na prática de existir, e o governo fica autorizado até mesmo a apresentar um déficit em 2014.
Foram semanas de embates entre governo e oposição para que a medida passasse pelo Congresso. A votação do projeto foi concluída no último dia 9.
O texto principal foi aprovado no dia 4 após 19 horas de sessão.
Dias antes, Dilma condicionou a ampliação dos limites para a liberação de verbas indicadas por congressistas à aprovação da manobra fiscal.
Com a aprovação da matéria, deputados e senadores garantiram um reforço de R$ 444,7 milhões em verbas para investimentos principalmente em obras em seus redutos eleitorais. Cada um dos 513 deputados e 81 senadores terá a mais R$ 748 mil em emendas individuais, totalizando R$ 11,7 milhões no ano.

MINHA GIOVANA NO FEMUSA ENTREGANDO O VIOLÃO AO ARTISTA SORTEADO

MINHA GIOVANA NO FEMUSA ENTREGANDO O VIOLÃO AO ARTISTA SORTEADO
MINHA GIOVANA

MINHA DAMIRES E MINHA GIOVANA

MINHA DAMIRES E MINHA GIOVANA
PRESENTES DE DEUS

Total de visualizações de página

BRINQUEDO DE CRIANÇA!

BRINQUEDO DE CRIANÇA!
MINHA GIOVANA
Powered By Blogger